HANOI DEPARTMENT OF EDUCATION AND TRAINING

ME LINH AND SOC SON DISTRICTS

(The test consists of 02 pages)

HANOI OPEN MATHEMATICAL COMPETITION

SENIOR SECTION – YEAR 2019

Exam time: 120 minutes **Date: 11 January 2019**

- Examinee's full name:
- Registration number:..... Room:
- Important: Write your answers in the exam papers provided.

Part I. (10.0 marks)

Questions 1 - 10 are short questions, each worth 1 mark, and you can answer without showing your working.

Question 1. Let $\{x_n\}$ be a sequence given by

$$\begin{cases} x_1 = \sqrt{6} \\ x_{n+1} = \sqrt{6 + x_n}, n \ge 1 \end{cases}$$

Find $[x_{2019}]$ (where [x] is the Greatest Integer Function of *x*).

Question 2. For which values of *m*, the equation

$$x^{2} - (2m+1)x + m^{2} + 1 = 0$$

has two real solutions x_1, x_2 such that $x_1 = 2x_2$?

Question 3. Suppose that x + y = 1. Evaluate $x^3 + y^3 + 3xy$.

Question 4. Solve the inequality 3|2x-1| < 2x+1.

Question 5. Evaluate $(4 + \sqrt{15})(\sqrt{10} - \sqrt{6})\sqrt{4 - \sqrt{15}}$.

Question 6. If $2x^2 + 3y^2 \le 5$, find the sum of the maximum value and the minimum value attained by 2x+3y.

Question 7. *n* is the largest positive integer such that $n^3 + 100$ is divisible by n + 10. Find the digit sum of *n*.

Question 8. Let *a*, *b* and *c* be real and positive parameters. How many solutions does the following equation have?

$$\sqrt{a+bx} + \sqrt{b+cx} + \sqrt{c+ax} = \sqrt{b-ax} + \sqrt{c-bx} + \sqrt{a-cx}.$$

Question 9. Let $\{x_n\}$ be a sequence defined by

$$\begin{cases} x_0 = 3 \\ x_1 = 4 \\ x_{n+1} = x_{n-1}^2 - nx_n \forall n \ge 1. \end{cases}$$

Then $x_{2019} = ?$

Question 10. Given the real numbers *a*, *b*, *c*, *d* and *e* satisfy the relations a+b+c+d+e=8and $a^2+b^2+c^2+d^2+e^2=16$.

Determine the sum of the maximum value and the minimum value of *a*.

Part II. (10.0 marks)

Questions 11 - 15 are longer questions, each worth 2 marks, and you have to show your working.

Question 11. Prove that $\sin 10^\circ$ is an irrational number.

Question 12. Consider a triangle $\triangle ABC$, $\widehat{BAC} = 120^{\circ}$. Let AA_1, BB_1, CC_1 be three angle bisectors of $\triangle ABC$ ($A_1 \in BC, B_1 \in AC, C_1 \in AB$). Prove that $\widehat{B_1A_1C_1} = 90^{\circ}$.

Question 13. Determine the number of ways to choose 5 numbers from the first 18 positive integers such that any two chosen numbers differ by at least 2.

Question 14. Solve the equation

$$(x+3)^3 - (x+1)^3 = 56$$

Question 15. Prove that

$$16 < \sum_{k=1}^{80} \frac{1}{\sqrt{k}} < 17$$

The end.