HANOI DEPARTMENT OF EDUCATION
AND TRAINING
ME LINH AND SOC SON DISTRICTS
(The test consists of 02 pages)

HANOI OPEN MATHEMATICAL COMPETITION
SENIOR SECTION - YEAR 2019
Exam time: 120 minutes
Date: 11 January 2019

- Examinee's full name: \qquad
- Registration number: Room:
- Important: Write your answers in the exam papers provided.

Part I. (10.0 marks)
Questions 1-10 are short questions, each worth 1 mark, and you can answer without showing your working.

Question 1. Let $\left\{x_{n}\right\}$ be a sequence given by

$$
\left\{\begin{array}{l}
x_{1}=\sqrt{6} \\
x_{n+1}=\sqrt{6+x_{n}}, n \geq 1
\end{array}\right.
$$

Find $\left[x_{2019}\right]$ (where $[x]$ is the Greatest Integer Function of x).
Question 2. For which values of m, the equation

$$
x^{2}-(2 m+1) x+m^{2}+1=0
$$

has two real solutions x_{1}, x_{2} such that $x_{1}=2 x_{2}$?
Question 3. Suppose that $x+y=1$. Evaluate $x^{3}+y^{3}+3 x y$.
Question 4. Solve the inequality $3|2 x-1|<2 x+1$.
Question 5. Evaluate $(4+\sqrt{15})(\sqrt{10}-\sqrt{6}) \sqrt{4-\sqrt{15}}$.
Question 6. If $2 x^{2}+3 y^{2} \leq 5$, find the sum of the maximum value and the minimum value attained by $2 x+3 y$.
Question 7. n is the largest positive integer such that $n^{3}+100$ is divisible by $n+10$. Find the digit sum of n.

Question 8. Let a, b and c be real and positive parameters. How many solutions does the following equation have?

$$
\sqrt{a+b x}+\sqrt{b+c x}+\sqrt{c+a x}=\sqrt{b-a x}+\sqrt{c-b x}+\sqrt{a-c x}
$$

Question 9. Let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
x_{0}=3 \\
x_{1}=4 \\
x_{n+1}=x_{n-1}^{2}-n x_{n} \forall n \geq 1
\end{array}\right.
$$

Then $x_{2019}=$?
Question 10. Given the real numbers a, b, c, d and e satisfy the relations $a+b+c+d+e=8$ and $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=16$.

Determine the sum of the maximum value and the minimum value of a.

Part II. (10.0 marks)
Questions 11-15 are longer questions, each worth 2 marks, and you have to show your working.

Question 11. Prove that $\sin 10^{\circ}$ is an irrational number.
Question 12. Consider a triangle $\triangle A B C, \widehat{B A C}=120^{\circ}$. Let $A A_{1}, B B_{1}, C C_{1}$ be three angle bisectors of $\triangle A B C\left(A_{1} \in B C, B_{1} \in A C, C_{1} \in A B\right)$. Prove that $\widehat{B_{1} A_{1} C_{1}}=90^{\circ}$.

Question 13. Determine the number of ways to choose 5 numbers from the first 18 positive integers such that any two chosen numbers differ by at least 2 .

Question 14. Solve the equation

$$
(x+3)^{3}-(x+1)^{3}=56
$$

Question 15. Prove that

$$
16<\sum_{k=1}^{80} \frac{1}{\sqrt{k}}<17
$$

The end.

